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NOTATION

A Attenuation

al Ro P'/psp1

B b(t) 2/2 is Rayleigh's dissipation function

b Dissipation coefficient

C Generalized driving function

c Velocity of sound

D Thermal diffusivity

d Thickness of bubble screen

Ei  Incident sound energy

E, Reflected sound energy

F Characteristic frequency of the gas bubble

fM Minnaert's resonant frequency

fo Resonant frequency

G Universal gas constant

g A factor which takes into account the effect of surface tension

h Height above the bubble producers

I Idem factor

K Thermal conductivity

k Restoring stiffness

L Lagrangian function

m" Mass of the gas contained in the volume v"

m, Mass of the gas in the bubble

m2  Generalized mass

no  Average number of bubbles per unit volume

IP" Complex amplitude of sinusoidal pressure '

P Instantaneous pressure on the bubble surface

P. Pressure inside the bubble

1) 0  Static pressure
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P., Instantaneous pressure in the undisturbed liquid

p Sinusoidal pressure on the liquid surface

p Sinunoidal pressure on the bubble surface

Pa Acoustic pressure on the bubble surface

Pi Incident sound pressure

Pr Reflected sound pressure

Q Number of cycles required for the amplitude of motion to reduce to e- ' of its
original value

q Amount of heat energy transferred

It Radial distance

R' Nonresonant bubble radius

Ro  Mean bubble radius

R1 Instantaneous bubble radius

r Change in radius from the mean bubble radius

S Net stress dyadic

s P Specific heat at constant pressure

8V  Specific heat at constant volume

T Absolute temperature

To  Equilibrium absolute temperature

t Time

U Internal energy

Vo  Equilibrium bubble volume

V1  Instantaneous bubble volume

v Change in volume from the equilibrium bubble volume

V' Infinitesimal element of volume in the gas bubble

W Work done on the bubble

X Rate of pure strain dyadic

y Change in temperature of the gas as a function of the bubble radius

Z Tube radius

a A\ factor which describes the departure of the bubble stiffness from the adiabatic
stiffness
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Ro /
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, Ratio of specific heats

5 1'Q , the damping constant

50 Resonant damping constant

Angle between the incident sound ray and the normal to the bubble screen

11 Polytropic exponent

0 Change in temperature from the equilibrium temperature

A Natural logarithmic decrement

,A Wavelength

A Coefficient of viscosity

p Density

a Surface tension

(./2D),2
S (j.l1 !2

P Velocity potential

Circular frequency
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ABSTRACT

I theoretical diz-cussion of thermal, radiation, and vi.cous damping for

re-onant air bubbles in ater i., presented. \n error in the derivation by Pfriem

for the thermal damping constant is corrected. The experimental results verifv

tha t the damping constant at resonance is the sum of the thermal and radiation

dlamping, and poss;bly viscous damping.

INTRODUCTION

The earliest reference to bubbles as sound sources %as made by Bragg, 1 who attributed

to entrained air bubbles the murmuring of a brook and the "plunk" of droplets falling into %ater.

\lirinaert 2 has since shown that the sound generated by gas bubbles in liquids is associated

%ith 'imple volume pulsations of the bubble without change of shape. The bubble behaves a.;

a simple damped oscillating system %ith one degree of freedom. Therefore, the differential

equation of motion for the bubble systen has the same form as the second-order linear differ-

ential equation for a mass fastened to a spring. As the bubble periodically expands and con-

tracts, the surrounding liquid is the inert mass which is set into vibration, whale the stiffness
is due to the gas in the bubble. This zero-oider radiator has a sharply defined resonance at

the frequency:

1 70 P2~

Sher,'o Oik the mean radius of the bubble,

Po is the static pressure at which the bubble has the mean radius ll0 ,

, is the ratio of the specific heats of the gas enclosed in the bubble, and

P .is the density of the liquid. (In this report a subscript I will refer to properties of

the gas while subscript '2 will refer to those properties of the liquid.)

Equation [11] will be derived later on page 5. This resonant frequency derived by \Minnaert

assumes an adiabatic equation of state for the gas in the bubble.

The volume pulsation frequency of nonspherical gas bubbles in liquids has been con-
-i lore b. Strasborg, 3 aho used oblate spheroids to approximate the nonspherical shapes.

This determination indicates that the frequency is only slightly dependent upon !he ratio of

the major to the minor axis of the spheroid. In fact, for a ratio of two, the volume pulsation

frequency of an oblate spheroid differs by only 2 percent from that of a sphere with the same

volume. Observations have shown that large bubbles are generally nonsphorica! whereas very

small bubbles tend to be spherical.

~ are ist ed on page 34.



In addition to -imple volume puls.t;ons, there also may be oscillations in the shape of
the bubble. The natural frequenc. for the highermodes of thap, o.;cillation has been calculated
by Lamb; 4 Strasberg 5 has used this analysis to demonstrate that shape oscillations do not seem

to result in significant sound pressures except perhaps very close to the bubble. Physically,

the case of a quadrupole demonstrates the reason for the feeble sowid. The quadrupole repre-
sents two sets of sources and sinks for sound on the bubble surface. The distance between
each source and sink is very small compared to the wavelength of the sound; therefore, on the

bubble surface, almost all the sound from the source is fed back into the sink. The result is
that, away from the bubble, only insignificant sound pressures occur.

The sound pressure resulting from excitation of volume pulsations by several mechanisms
has recently been discussed in the literature. 6 The mechanisms, which cause bubbles to pul-

sate and radiate sound, are bubble formation, coalescence, or division; the motion of a free

tream of liquid containing entrained gas bubbles past an obstacle, or the flow of li'uid con-
taining entrained bubbles through a pipe past a constriction; and an incident sound wave.

Experiments conducted by S~rensen 7 showed that liquids containing a gas possess
higher sound damping characteristics than do those which are gas-free. Just a few widely

dispersed bubbles which are so small as to be invisible can have an appreciable acoustic

effect. When a large number of these small bubbles are present, the liquid will be nearly opaque
acoustically. Small impurities in liquids, such as suspended particles, have negligible in-

fluenco in comparison with the damping increase due to bubble-. Therefore, bubb!es have a
considerable importance in thze transmission of underwater sound. In order to understand the

attenuation of sound by gas bubbles in liquids, fundamental processes by which pulsating
bubbles dissipate their energy must be known. This report will investigate the portion of the

energy radiated in the form of spherical sound waves, the part which is transformed into heat

during the polytropic compressions and expansions of the enclosed gas, and the part of the
energy lost in viscous dissipation. IL may be that these three processes completely account

for the total damping of gas bubbles in liquids.

THEORY

Periodic enforced changes in the pressure on a bubble result in volume pulsations of the
bubble. If the amplitude of the volume oscillation is small, the motion of the bubble system is

described by a second-order linear differential equation. For this system possessing one degree

of freedom, the condition of the bubble system is defined by the change in volume v from the
equilibrium volume V0 . The instantaneous volume V1 of the bubble is the algebraic sum of the

mean volume Vo and v. In a similar manner, the instantaneous radius U, of the bubble is the

algebraic sum of the mean radius U0 and the radial increment r. The bubble is assumed to be

in an incompressible liquid; at the surface of the liquid, a sinusoidal pressure p is applied:

p. Pei)t [21
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%here P i., a constant. Liquids are slightly compressible, but, as long as the bubble size is
small compared to the wavelength of the pressure %ae, the liquid is considered incompress-
ihle.5 The instantaneous pressure P 2 in the undisturbed liquid is the sum of the sinusoidal

pressure P ei G' and the static pressure PO:

1'2 = Peia)t + Po [31

fowever, at the bubble surface, the instantaneous pressure P" is the instantaneous pressure
P2 in the undisturbed liquid minus the inertial reaction of the liquid in motion about the bubble.
For the moment, until the inertial reaction of the liquid is determined, the instantaneous pros-
-Lre P'2 at the bubble surface is defined as the sum of the sinusoidal pressure p'and the
static pressure P0 :

S= p+ t= Pei' + ,0

%%here I'" is the complex amplitude of the driving pressure p. The bubble, which is in this
uniform but alternating pressure field, cannot be in equilibrium with this oscillating pressure
,lile-. the bubble itself is pulsating. Uniform pressure in the gas bubble implies that the
inertia of the gas is negligible. The liquid surrounding the bubble provides the inertia for the
bubble system. The equation of motion for the bubble system is derived in terms of generalized
coordinates by using Lagrange's equations. When there are no dissipation or forcing pressures
present, Lagrange's equations are written in terms of the Lagrangian function L, which is de-
fined as the kinetic energy minus the potential energy of the system:

d I - --l S 0, E51
dt ~tV _T

When dissipation is present, the dissipation pressure is assumed to be proportional to the
bubble volume velocity ;. Dissipation of this type may be derived in terms of a function B,
known as layleigh's dissipation function, and defined as9

B (V) [61
2

where b is the dissipation coefficient. The equation of motion for the bubble system when
there are dissipation and a generalized driving function C, whore neither arises from a poten-
tial, is

d a dL aB- 7 +-i = C7 [7]
dt \ di) I dv dv

The potential energy of the bubble system is obtained by assuming that the gas in the bubble
undergoes an adiabatic process during the volume pulsations of the bubble:

3



12 I1 1010)

'I I'' = .or 9
10

I' ' - 1. [10;2 0 0

Therefcre, the potential energy~ is

P. F. 2 J (I~ PO) dv -v 2  IN
0 -

%s the bubble periodically expands and contracts, the surrounding liquid is set into
vibration. The maximim kinetic energ-y of the liquid particles occurs at the moment the bubble

has aaain recoveredl its equilibrium volume V. The flo%% of the liquid is irrotational. therefore,
" velocity potential exists. The velocity potential of a liquid particle at a distance Ri, due to
a simple source, in a liquid at rest at infinity, is to

L 1121
4 Y7 I?

and the velocity of this liquid particle is

Th kinetic energy of all the liquid volume elements of density p2 is

K. F. = 120 (jj2 40 1?2 dle 1141

Trhe integration. is extended to infinity because the bubible i, as~sumel ito lie surrounded by a
%erv large liquid volume. Upon integration, the above expression y;-Mcs the kinetic energy as,

R ho

\ccordingolv, (lie LaorangIian LI. s

L ' 12 1016

SR 2",-



'tnd the eq1uation of motion for the bubble ,I~em, %%hen .I ,inuso~id press urv e 'c' is applied

at the surface cf the liquid and dissipation is presenlt, i.,

v c- -- r t PI't'" 1171
110'

The forcing function P el" is preceded b% a minus sign as a decrea.se In pressure result., in

ar, increa-e in the buable volume. The term p, I.,R is the -,eneralized ma.ss, in, of the bubble

N tem. The stiffness of the bubble s.Nsteri is defined as the change in pressure on the bubble

.urf.ace a-;sociated A th the change in bubble volume. therciore, the term yPl'~ I'O is the adia-

kad = -- (181
01' vo

Therefore, the linear second-order differential equat~on of motion for the bubble system is

%%ritten as

)72;+bv+ kd V= Ie]2W 1191

V , tho buiile i, slighthN non.spherical, each term in E'1uaion 1191 is nearly indlependent of

-hape %%lien the mean radius leo is taken as the radius of a sphere of the same volume.II

Tran-ient volume plilsations are given by the solution of Equation [19! % hen the right side of

the equation is -et equal to zero. Furthermore, if the dissipation i.s negliaihle, 1.quation 1191
becomes;

71l2 F + ZI. = 0) 201

and the resonant frequency of the bubble system is

1 "a d '0

f if (21111

'%hich is Mlinnaert's extression as given in E1-quation l on paa 1.

Mihen the right side of Equation 1191 is zero, i.e., the driving pressure has been removed],

Owe ound puke, from the bubble ccnsists of a damped exponential sinusoidal oscillation. The

number of (-\ des required for tho ampl itude of motion to reduce to e - ff of its original value is

the i,' of the bubble s)stemn. M~en the dissipation is small, tl'e difference bet\%cen the frequency

Of the oscillation and the resonant frequeneN of khe bubble ,s\.,tem \v ithout dissipation '-ne.g-

licoiblo: the () of the bubble system is expressed as
2 n f 112 

1 2



,%here f. is the resonant frequency. The Q may also be defined for a driven s.stem as

/o
9=-- 1231

2 -f

%%here '2 and f, are the two frequencies respectively abovc and below resonance at which the

average sound power of the bubble has dropped to one-half its resonance value.' 2 The total

damping constant & is no% defined as the reciprocal Q of the bubble system or 1- 1 times the

natural logarit"inic decrement A:

1 A
S.. . [241

In this report, the damping constant in all cases will refer to the reciprocal Q of the bubble.

Tl:- total damping may be explained by losses originating from three processes:

1. Thermal damping 8,1 due to the thermal conduction between the gas in the bubble and

the surrounding liquid.

2. Sound radiation damping 6,.d"

3. Viscous damping Si, due to viscous forces at the gas-liquid interface.

The total damping, expressed as the sum of these three processes, is

1

- -= th + 8rad + 5vis [25]

THERMAL DAMPING

In the derivation of Equation [1] for the resonant frequency, the adiabatic equation of

state was assumed. The pressure and volume changes are in phase with ona another so that

dl, /P o equals -ydVI/V o . For the adiabatic case, there is no transfer of heat. In the other

limiting c se of a purely isothermal process in the gas space, the pressure and volume chnngos

are again in phase; dP'/P o equals -dV/V o . For this case, there is just as much heat flow-

ing outward from the bubble during compression as flows inward during expansion. The work

done by the driving pressure in compressing the gas space is just equal to the work done by

the expanding gas in moving the surrounding liquid. However, for the case of a real bubble,

the gas in contact with the liquid closely follows the isothermal equation of state since the

liquid has a large specific heat and thermal conductivity. In .he center of a real bubble away

from a substance having a high specific heat, the gas ne,.'ly follows an adiabatic equa(ion of

state. Therefore, the thermal process is polytropic for a real bubble, and a phase difference

exists between the increase in pressure per unit original pressure and the decrease in volume

per unit original volume. This phase difference causes a hysteresis effect. The work done

on the ga, '.olume by the driving pressure during compression is more than the work done by

6



, paet(' in :.io% ing the -urrounding liquid during expanion. This difference in the %ork

done represents a net flo of heat into the liquid. The net flo%% c' n.ent into the liquid is

characterized by the thermal damping, constant.

The subject of thermal damping has been investigated independently by Pfriem,1 3

\'ilts, 14 and Saneyosi,'q and all ha~e obtained sinilar resits. The re.ults of both 11illis and

Saneosi are a~ailable, but unfortunatel% their deri6ations are not easil% accessible. There-

fore, the derivation as outlined by Pfriem will be followed.

In deriving the expression for the thermal damping constant, the gas bubble is assumed

to be in an incompressible liquid, and is excited to volume pulsations by a sinusoidal pressure
1"e" ' t -pphed at the surface of the bubble. The liquid has a large specific heat and thermal

conductivit%, and behaes as a heat reservoir. This very large mass of liquid is capable of

absorbing or rejecting an unlimited supply of heat without suffering appreciable changes in its

temperature. Consequently, in the liquid adjacent to the gas-liquid interface, it will h- asnmed

that there are no chan,,es in temperature. A temperature field in the gas will be found that

-atisfies this condition, and, the second condition, that the temperaturc in the center of the

hubble is finite. The o.scillations in the pressure, volume, and temperature of the gas in the

bubble i ill be assumed small. Consequently, the equations relating these three thermodynamic

coordinates are linear. In addition, the density and the specific heats of the gas are regarded

as constant. In the gas, the pressure is not a function of position but only of time. Therefore,

the gas is in a uniform but alternatint' pressure field; the inertia of the gas in the bubble is

negliible. The heat transfer process is conduction. Convection is unimportant as the time

factor for etablishment of this proce.ss is considerahly larger than the time consumed during

a half-cycle compression of the bubble.

In the subsequent discussion, the thermal damping constant is found by first finding an

expre.,ion. for the change in bubble volume v. l)urin,g a compression of the bubble by the

for, ing ;wes.,ure/' ,elot applied at the surface of the bubble, work i5 done on an infinitesimal

element of volume in the gas. The internal energy of the gas in this volume element is in-

creased, and there is a flow of heat from this volume. A differential equation for conservation

of energy is formed, and the solution of this equation, subject to boundary conditions, yields

tw temperature field for all points in the gas space. Since the temperature field is known,

the change in bubble volume v is calculated for a change in the temperature and a change in

the driving pressure at the bubble surface. The expression for the change in bubble volume

is then substituted into the differential equation of motion for the total gas space within the

bubble. This operation yields the thermal damping constant and the stiffness of the gas.

Finall%, the thermal damping constant is determined as a 'unction of the resonant fre'1uenc

of the bubble system.

In order to calculate the thermal contributions to the total damping of the bubble system,

the change in bubble Nolume must first ie determined. When the driving pressure at the bubble

surface compresses the bubble, %ork is done on the gas space. This work (lone on the gas



!-pace increases the inernal energy of the g-as, and also results in a transfer of heat energyv
through the gas. Trhe added heat is transferred by conduction fr-r, the gas bubble into the

,urrounding liquid. The compression process must obey the conservation of energ principle

as stated in the first law of thermodynamics:,

w~here VU is the increase in internal energy of the gas space, \q is the heat added to the gas
,pace, and MV is tie work done on the gas space. II hen each term in :"quation '261 is divided

by an infinitesimal time Nt and V1 is allowed to approach zero as a limit, the rate of increase
in internal energy is given as

dU iTj 7t-,; (271
dt =dt dlT

(line dra%%n through the differential sign indicates an inexact differential.) At a point in tile
g p aco, the rate at which work is done per unit volume by the driving pressure on an infin-

itesimal element of volume v'of the gas is

- (28]

,4inciv the '.olumne decreases during compression, the term on the right side of Equation [281 i.-

preceded b3 a minus sign as the rate of work done per unit volume is positive. For this sn~ll
eler-wni of '.olume at a point, the rate of increase in internal energy per unit volume is

dU 111]

%%fivre s,, is the sp~ecific heat of the gas at constant volume, and 01 is the change in gas tem-

por iturv from the equilibrium absolute temporature To. Trhe rate of transfer of heat energy per
unii ou~me fir an infifiites.irnal volume at a point as a result of conduction is proportional to

tl'e h'~ergence of tho ti-nperature gradient*, the proportionality constant is the thermal conduc-

tivity I of the a-

A*i I. V (30

% here the spherical coordinate N.stem origi nate- at the center of the Iuhhli . Wiher. the ex-

pressions, for the rate of increase in internal envrgy 1er uit %~olumre at a point, the rate at



%%hit h heat i. added per unit %olume at a point, and the : %te of %aork (lone pcr unit %olune at

a point are subAtituted into Lquation 127], the differential equatic n for the temperature field

within the La space is obtained:

.,a d('0 1 ) h'1 02(1?0 1)

1? di~ dh' ~ ~1321

\ sulb,titution can be made for the second term on the right side of the abo"e equation b con-

sidering the ideal gas equation:

1, v'= m'G(To + 01) 1331

hore i," the n'ass of the aas contained in the volume element v, and G is the universal

gas constant. Equation 1331 may be differentiated with respect to time to yield:

dV' n'G d(lO) dP'1
' -a - v"- tA41

or

' PIG O(10 1) dl'
= 1351V" at I? at Wt

As the universal gas constant G is the specific heat at constant pressure, sp, minus the

specific heat at constant volume and 1

P2= P0 + I'e~'t, [41

Equation 1351 may be written as

12 a ," 1p a ( 10 ) P I O u O I)
- ___= -- o - ~'" 1 361

v" at a t R O

Consequently, when this expression is introduced into Elquation 132], the differential equation

becomes

dbO) a' , d2(1701) a h'I. ..+ P- tle l c" [37]
at OP Isp P I ll2 P I Sp P

Lquation [371 is a linear differential equation describing the temperature field within the gas
bubble. The term K I ,'pIS , I is a parameter of the gas which Kelvin called the thermal dif.

fu.ikity 1)1 of the gas. Thermal diffusivity is a measure of the rate of heat propogation due

to the thermal conduction. A solution of this differential equation for the temperature field

in ide the ga.s bubble must satisfN certain boundary conditions. %t the center of the buboile,



the change in temperature must finite, and the gradient of the change in temperature must

he zero. Finally, the change in temperature must be zero at t.he tv.i-liquid interface and the

gradient of the change ir tempe'rature must be finite. The solution of Equation [37] may be

obtained by several methodl. One method is to assume that the chance in temperature 01 is

0 1 .Ye1 [ {381

where y is a function of le on.y.* Therefore, Equation [371 becomes

02 CleP"
]co fly) = DI - (ley) + j - 391

d1?2  PI p I

\ possible solution of Equation [39] is

R sinh 01RMy = at  sin - b i0 40)

Differentiation and substitution of this expression in Equation [391 shows that it is a solution
if %%e identify al with

RP,
al=

and Vj I with

Equation [t0] is a solution for the temperature field providing the boundary conditions are

satisfied. When le equals the mean bubble radius l0 , Equation [401 becomes

Ro = 0, ? 0 [41]

and the gradient of y is finite:,

*It is evident that Equation [381 is not an exact solution of the physical rroblem, although it satisfies all the
conditions of the mathematical equations. The physical reasoning indicatr s that the mean temperature inside the
bubble must increase toward the center of the bubble. lIo.vever0 accor.lng to Equation [381, at the bubbie .iuuf&ce.
the temperature gradient is (dy/dR)eJWa , with a time average value of zero, whereas its time average value should
be negative for a net outward flow of heat. This discrepancy comes about in neglecting certain second-order terms
in order to obtain it dfferential equation with linear coefficients, and then in assuming that 01 and V are sinusoidal.
the need for an increase in the mean value of 01 indicates also the existence of higher evena harmcnics. However,

the subsequent trcatment of the solution of Equation[38 leads to results that are quite good. It is possible to go
back and correct the equations by *he method of successive app~oximations.

10



Ti [ O1 _%'Icoth vi?]1 1421

%%hen R is very small, Ry is

Ry-aL 1431L R0o sinh 0 1/Ro

Consequently, when I is zero, y is finite:

y~ 1  0 - [ih R0 44]y =- a , F sinh 0t 1 Ro

and the gradient of y is

- 0 (451C)R

Therefore, the boundary conditions are satisfied; the temperature field within the whole gas

space is now known. The change in bubble volume v can now be determined for a change in
the driving pressure at the bubble surface and a change in the temperature 01. The total
rhange in volume of the -,as space is the sum of the changes in volume of all concentric shells
whose radius is R and thickness dR. A shell of thickness dR has a volume:

v o = 4 1?2 di? [461

In accordance with the ideal gas law, two different states of the gas are expressed as

t 0 v0
P v = - T [471To

where 7 is the absolute temperature of the compressed gas. When Equation [471 is differen-

tiated, the result is

p 0 v0
d,= dT --- dl' [481d-To O

Since

dT=01 = ye l t  [381

11



and

p t p.t'ejulo 141

E~quation [t9] i,; reNritten a,;

,I' 4 n el, - - 11 d ?

Tho expre'sion for 112y i; obtained from Equation [401:"

lol" F l, s hnh V -1Im l . . ... . II
11  .a PI o  sinh t401

Therefore, the total change in the bubble volume is

v = II h,? sinh adle 1.01

e 0  . p1 lo o sinh 0t o - J
or

It *p 1'o  2o 0 2  (¢, ol coth 1 Ro -  ( 511
PIS 7' 110  - - I oh~~ ~Ml

Equation [511 is further simplified by noting that

'o vo 'o vo P'o
7o='m0= G mn(so - So) P (S l- SP )

therefore,

It 1 e)(- + - o I) iROcth 0 1R0 ) - 1f1 1521

or

V+V - o, 3 ( V1) I o coth VI l?) - 1 531

f, 1 0

M;hen the change in volume per unit original volume (Vo - V1) ,' Vo is plotted against the change

in pressure per unit original pressure (P - P0),'Po on a iwessure-olune graph for the real
components of Equation 1531, the area enclosed by the compression and expansion curves
represents the net loss of energy by heat conduction. The work done in compressing the gas
bubble is more than the work done by the gas in oxpanding. The change in bubble volume is

12



no% known. There remains now the task o: relating the change in the bubble volume and the

assumed harmonic excitation pressure at the surface of the bubble to the vibrational properties

of the gas bubble; i.e., the stiffness and damping attributes.

In order to determine the stiffness and damping, the differential equation of motion for

the bubble system, which was given in Equation [191 on page 5, is considered:

m2;+ bth t kv=- Pe i t  [19]

where bth is the thermal dissipation coefficient and the sinusoidal forcing pressure P eiof

is applied at the surface of the liquid. Since the inertia of the gas in the bubble is negligible,

Equation [19] can be rewritten for the differential equation of motion for the total gas space in

the bubble:

bth + kv - (P e " + m2 - Pe i  [4i

where P'eit is the sinusoidal excitation pressure at the surface of the bubble. When the

expression for the change in bubble volume v:

=- ° + 2 [2 Ro coth Ro)- [521

is differentiated and substituted into Equation [54], the following expression is obtained:

+ aJ bth 0  1+ 3 ( 0 coth 01R O)- 1 [551

Since the parameter b has the symbol j under the square root, which is undesirable, and there

is the need to separate Equation [551 into real and inaginary components, a substitution for
01is irt,odluced,

, 2 (1 + i)2 2 = 2i02 : -

01 -(1 + D -k ' (1 + Y)V''

Accordingly, the parameter 0 1R 0 is

0 1 Re = Re hF , = V K,

When the frequency and the radius of the bubble are kept constant, the quantity 0,Io varies

as the square root of the density of the gas, or alte-natively as the square root of the average

13



Iein:-ike the bubble ~ince the .pecific heat at con.stant pressure and the thermal Con-
dluctivity are independent of density:

('J, 1? are constant)

\nother condition exists; for (, I o\hen the excitation frequency is constant and the radius of
the bubble satisfies Equation [1l.:

for a resonant bubble. Then for the resonant case, the parameter 6i11?0 varies as the averag'e
pressure inside the bubble:

0 1 leo -P

(= co constant)

B~y introdlucing the substitution for 0, and noting the identities:

sinh (6 1Ro +1 frk1R0 ) =sinh (0 14:,) cos (q1R0o) j cosh (0i11?o) sin ( illlo)

cosh (rs I R + j 51 ?e) =cosh (, 1 R) cos (- 11o) 4j sinh (61iO) sin (61 RO)

Equation [551 becomes

kc- j (abt V0  3(y - 1) sinh (2 0511o0) - sin (20 1R0)

k2 + (&oblh )2  ""Po 2 1R Lcosh (2 'Ihi
11 o) - sin (2 10

(/sinh (2( 1lO) + sin (20, Ieo) 1 --- il [n

- Kosh (20, R0 ) - cos (2 il!O) (561o)i

Even though Equation [561 is separated into real and imaginary terms, the form is still not
suitable for determing the thermal damping constant at resonance. In Equation [22]:

1 -bth [221

Qth WO'n2

the thermal damping constant is given in terms of the thermal dissipation coefficient &b,.
resonant circular frequency co , and the generalized Mass M2. However, the generalized
mass is simply the stiffness k divided by the square of the resonant circular frequency.
Fherefore, the dimensionless thermal damping constant, which at resonance is the reciprocal



gor time-: the natural logarithmic decrement, i:s &-hk At resonance, the maximum value
of the thermal damping constant is about one-tenth: therefru, (I .',h" k) 2 is %ery small and can
be neelected with respect to unity:

( 'bth)

k. k (1 ,wbth[571

Accordingly, Equation [56] becomes 1i~ h

b'th - V0  - sinh (20 1RO) - si n (20 1 e)

kyk P0  
2c0iRO kcosh (201RO) - cos (255,R,)J

sinh (20 1R0 ) + sin (2 61R0 ) 1

[ - (cosh (2 1 RO) . cos (20 1 RO) I

(-1)+ cash (2- 1R0) - cos (2q. 1I?0)

Therefore, the dimensionless thermal damping constant is

sinh (2 '111o) + sin (2(b1 R0 ) 1

0 i b h c s ( 2 q S I R O ) - c o s ( 2 (k I B ) - R 15 9k 2(b I Re sinh (201R0 ) - sinl (201RO)

3y- 1) cash (20 1 RO) - cos (2 1 RO)

For large values of 2(,1RIO, i.e., equal to or greater than 5, the thermal damping constant is
given to within 1 p~ercent by

0ibh OR 36' - 1) [60]

1+
3 (y - 1)

Larg-e values of 26
1RO correspontd to large bubbles or the adiabatic case. The dissipation

arising from heat conduction vanishes. The thermal damping constant for very small values of
26lRO, i.e., equal to or less than 2, is given to within I percent by

15



wbth.,.(y, . (2-0'Ro) 2

[O1l
k y 30

Very small values of 26 1 R correspond to small bubbles (,r the isothermal case, and again

dissipation arising from heat conduction vanishes. The amount of heat that flows from the

gas space into the liquid during compression is just equal to the amount that flows from the

liquid into the gas during expansion; the net flow of heat is zero. However, there is a transi-

tion region between small and large values of 2 0Ro where the thermal dissipation is a maxi-

mum. In this transition region, the relation between the pressure and the total gas volume cart

be expressed as Pj V7 equals a constant, where the exponent qt varies from unity to y; the

state is polytropic. Figure 1, a plot of the thermal damping constant (0 bth/k vs 2bRe
clearly illustrates this transition region between isothermal and adiabatic states.

The stiffness of gas bubbles is also important since the resonant frequency fcr the

bubble system is directly proportional to the square root of the restoring stiffness. By com-

paring the real terms on both sides of Equation [561, the stiffness is expressed as

kgo 1

YP° ( jLth\21 3'- 1) sinh (295 1 R°) - sin (2 1 R°)) 0

~~~~\~IJ ~ 201R0 cosh (20~,1R0) - cos (21R0 ) (2

For large values of 201Ro , i.e., for large bubbles and the stiffness approaching the adiabatic

stiffness, the dimensionless stiffness kVo/yP o is given to within one percent by

k.dVo 1{ + 3+ -1 )
2qS I e 2A1R

008

o IFigure 1 - Thermal Damping Constant versus

Dimensionless Parameter 251Ro

~ OL
, 004

I Sothetmo Adobot

0 , 8 i2
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Pfriem, due to an oversight, used only the first power of 'bth, k in obtaining Equation (631,
and, therefore, derived the erroneous result:

kadVO 1

for the dimensionless stiffness. The stiffness as given by Equation (63] is used to determine

the thermal damping constant at resonance. Therefore, the result obtained by Pfriem yields an

incorrect thermal damping constant at resonance. For small values of 2 Ro, i.e., for small

bubbles and the stiffness approaching the isothermal stiffness, the dimensionless stiffness

is given to within one percent by

isovo [65]

V"'0  (1 I -O 2.1(y-1)

When the dimensionless stiffnes kVo / yPo is plotted as a function of 240,1o, as in Figure 2,

the dimensionless stiffness approaches y- for small values of 20 1Ro and approaches unity

for large values of %51R o. The restoring stiffness of the gas and the thermal damping constant

are now known. The only re, ,ining task is to introduce the correct expression for the stiff-

ness into the equation for tl~e resonant frequency, and then determine the thermal damping con-

stant Sth at resonance.
The correct expression for the stiffness will now be introduced into the equation for

the resonant frequency. Minnaert derived the equation for the resonant frequency of pulsating

gas bubbles in liquids by considering an adiabatic equation of state:

09

I Ad'obo-c-

0.0

Figure 2 - Dimensionless Stiffness versus z ,soherno:
Dimensionless Parameter 2 6

i
1 l o

07

6

06 -- ---0 4 8 1
20 RO
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I Ca d 1ll)[i .F m2  -"". R P2

l'oever, the state is poi)tropic; the stiffness constant k for large b-bb'es, which is of prac-

tical importance in discussing under%%ater sound transmission, is given by Equation [631.

SPo 

Y 1
k =- -- 163a)

2,k11?0 (1+ Y~?)

k I PO= YPO[661Vo e
VO VO of

where

The factor a describes the departure of the bubble stiffness from the adiabatic stiffness. Con-

sequently, Equation [1] becomes

iI
f= V = =167]

2: = O o P-- a o V "7=1-[

In the discussion so far, the instantaneous pressure inside the bubble has been considered the

same as the instantaneous pressure on the surface of the bubble. However, when the bubble

is small, the surface tension pressure increases the pressure inside the bubble; consequently,

the instantaneous pressure inside the bubble is greater than the instantaneous pressure on the

bubble surface. Smith; 16 Briggs, Johnson, and Mason; 1 7 Spitzer; 18 and Robinson and

Bluchanaf 1 9 are among some of the investigators who have discussed the effect of surface

tension on the bubble stiffness. The problem is to relate the pressure on the surface of the

bubble, which is associated with the change in bubble volume, to the pressure inside the

bubble. The stiffness k' is defined as

k' =- -- [18al
dl'

The pressure Pi inside the bubble is

=/ + ds

ip2t



,hero Pis the pressure on the bouible surface, o; is the surface tension, and R I ste ntn

tanfeou- bubble radius. The polN tropic equation of state for the gas inside the bubble is

= + 1 - 691

Therefore,

[70]
R I Re 1 1R

and

X). -2)2 [711
1 0 1 1 1 1

'IP 2u 2ar }[7a
o o 3q1o

'7 + o j 0

k'=- Q =- [71b]
V0  VO C1

%s here

2ar 2cr
g + - -

Trherefore, the correct expression for the resonant frequency f0 is

1 3y 0 9 [721fo=~ - qf~

I% len the bubbles are very large, the stiffness is the adiabatic stiffness and also surface tnn-

sion effects are negligible; consequently, the ratio g/et is unity and the resonant frequency

is given exactly by Minnaert's equation.
Since damping is of prime importance at resonance, the thermal damping constant will

now be determined as a function of the resonant frequency. The dimensionles,- parameter

il~ is written as

193



where
3yP o

4 rp7.Dl

The quantity F, for a given pressure, is a constant for the gas. Sine,) the parameter F has the
dimensions of reciprocal time, it is sometimes called the characteristic frec1&ency of the gas

bubble. When Equation [73a] is squared and the expression for a substituted, a quadratic
equation for 51Ro results in terms of the resonant frequency /o, characteristic frequency F,

and g. The solution of this quadratic equation is

16 [741Cz (y - I) 4 - Y o - 3 - 1)[4
S- 1)2 'o

By substituting the value of q01Ro, as given by Equation [741, into Equation [601:

1

Jbth IRO

k 29S I Ro
1+

3(y - 1)

the thermal damp;ng constant 8th at resonance is found:

F 16 Pg (3y-1)]
S- 1) 2 o 3 -1)

2 "  16 1g 751L 9 (, 1)2 f o

As Pfriem used an incorrect expression for a, he derived an incorrect thermal damping con-

stant; his expression is

3y0' 1 r f 3(_), I F9

When the following values are used:

PO = 1 x 106 dynes/ cm2 ,

o = 75 dynes/cm,

KI = 5.6 x 10- 5 eal/cm-sec-dog c,

y = 1.40
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0..0 _,I;
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1  .29 - 10 .gi cm3  305-'

1(31. tIhrn:I ai;33fg eoflant-r-a calculated

E~quation 1751 andI that using 11friem '. o
0002.-

equation are? plotted in Figure 3 a- a function zi

oif the resonant freq~uency. Figuire 3 cle-allyj
- 00.-

13 6 '0 30 6
.'ho%% that the13 result ob~tained bv P~friem i3 Rcewon, C. onY f..n WOC'CC$e e 'CCond

5(0 to G65 percent too high. The temllii)n

coii;taint determnined in this report, using the Figure :3 - Thermal Damping Constant for
Resonant Air Bubbles in Water

iiithod outlinmed by 33ie, agrees exactly %ith
The upper curve is the incorrect theoretical

the curve of I'tlliu ats given in the report by result obtained by P1friern.

-;pitzer. The thermnal :lamping constant 8t o

auir bubbile. in %ater larger than 15 inicrons radius and tt ith resonant frequencies les.; than 24(,'

kiloeN cle5 per second is determined to %%ithin I percent by using Equation 1751. When the

re~ttnant frequent-. i, nal Equation [751 for the thermal damping con~'tant is repilaced by thle

th =f b = 4.41 x i0r 4 ff0 -(seconds) [771

%%hwre f. in tile re.,onant. frequency in cycles l)er seconl. This simple relationship gives the

thermail damping constant to within 1 percent for air bubbles in water larger than 0.05 cm;

i.o., for air bubble., with resonant frequencies less than about 7 kilocycles per second. Equa-

tion [771 tv~eals that the thermal damping constant at low i'requencieg is proportional to the

square root of the resonant frequency.

RADIAT:014 DAMPING

In a cottilressilble liquid, a bubble excited into volume p~ulsations expends a portion of

it., energy byN radiating spherical sound waves. The bubble is considered as a Simple sound

source; the bubble radius Rois considered small compared to the wavelength A of the radiated

.soundl. Smnith 20 has calculated thle radiation damping for gas bubbles in liq1uids. In orler to

dvri-,e (lhe expression for the radiation damping constant, the velocity potential for a simple

s inusoidal source in a conmpressible !iquid is stated-,

0 (0V 1  RC)'8
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%%here c, is the velocity of sound in the liquid,

h' is the radial di--;arice, and

Iis the complex amplitude of the change in bubble volume v.

Equation (52]:

0P' e;( ____ ct,[)

V = V eicdL [ 791

defines R, s

Ve I) V~I) 2 [80 1P 02 2

Th. acoustic pressure :s determined from the velocity potential by the following equation:

t 4? -[1

On the bubble surface, the acoustic pressure is

P 2& 2V1 em e toR./2[82]

or
P2 () 2V1  26e)!431 0I

par ?o) -2 + c 3  [82a]
L2 I

a here on!N the first four terms are kept in the expansion. The acoustic pressure on the bubble
,irace is jitst the difference between the driving pressure on the surface of the liauid and

the change in pressure on the bubble surface associated with the chazuge in bubble volume.
The change in presstre on the bubble surface iF Vv. Therefore,

P. Av p0 + '1  =-

22



-P 2 W2
1 ) V / P2 &(dv2

el(at 2 R2 2Ro

[841
3 R 3

- - )+ k'v' elcul Pei

2
Since

j(' =) V1 e)lcu [85]

and

&2 V1 jj 861

then

.l~ + - O _ - ) v v P''= ei" t871
4~~ ~ ~ ;\R 2c! rRc 2  c3 3!)

For a large resonant air bubble in water with a resonant frequency of one kilocycle per second

and a radius of 9.33 cm, the term wi011/c 2 is

JoIRO 277110 1

C2  X2  -75

Therefore, the terms of higher order than &)ORO/ C2 will be neglected and E quation (871 becomes

V+- + k'v= Pe 10 1 [881

ks long as the bubble radius is small compared to the wavelength of the radiated sound, it is
seen that the generalized mass term for the case of a compressible liquid is the same as the
corresponding term in Equation [171 where the liquid was considered incompressible.

P2
- V+ b + k'v POO"P[17a]

The radiation dissipation coefficient b,.d is

bred 477 n8c]
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Therefore, !he radiation damping constant at resonance is

Ia b a - 1'1[O "U~lW 1901

ald -Qrad WO= 2 c 2 C2 VC

%%here n 2 is the generalized mass. The factor g takes into account toe effect of surface ten-

,ion %% hereas e describes the departure of the bubble stiffness from the adiabatic stiffness.

For large bubbles, the ratio g.a is unity, and, since the quantity 2 a1 o [if 'c, is a constant.

{he radiation damping constant at resonance is independent of frequency.

VISCOUS DAMPING

The problem of a pulsating spherical bubble in a viscous, incompressible liquid will

now be treated; the viscous damping constant at resonance %Nill be derived. \lallock 2
1 in 1910,

and, later, Spitzer 22 and Poritsky 23 investigated this problem. For a pulsating bubble, the

effect of viscosity is perhaps difficult to visualize. Lamb 24 states, "The only condtion under

which a liquid can be in motion without dissipation of energy by viscosity is that there must

be nowhere any extensions or contraction of linear elements; in other words, the motion must

consist of a translation and a rotation of the mass as a %hole, as in the case of a rigid body."

Mallock gives us a physical picture of the effect of viscosity on a pulsating bubble in an in-

compressible, viscous liquid by considering a small element of a spherical shell of liquid at

the bubble surface. This element has definite radial and lateral dimensions at the instant the

bubble radius is at its mean position. When the bubble expands, the small liquid element is

distorted; the radial thickness decreases while the lateral dimension increases. Likewise,

when the bubble contracts, the liquid element is again distorted; this time the radial thickness

increases and the lateral dimension decreases. Since the liquid is incompressible, the distor-

tion is not caused by a change in the volume of the liquid element but by viscous stresses.

Consequently, more energy is required to compress the bubble than is regained in the subse-

quent expansion.

It the presence of viscosity, momentum is transmitted from one region of the liquid to

anoth,- moving at a different velocity. An element of liquid moving rapidly in a paticular

direction tends to transmit its momentum to other elements of the liquid. The Navier-Stokes

equation of motion describes the force per unit volume acting on an infinitesimal element of

volume, at a point in a viscous liquid. The force per unit volume is ,hue to the instantaneous

pressure distribution of the surrounding liquid as in the case of a nonviscous liquid, and is

also due to the rate of change of momentum caused by the presence of viscosity. Mhen there

are no external forces acting on each unit mass of the liquid, the equation of motion is

P2 t h - +[
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'here

k = radial velocity vector,

+ R ) R - acceleration vector,

Po = mean pressure, and

= coefficient of viscosity.

\s the liquid is considered to be incompressible, the divergence of the velocity V. R vanishes

so that the second term on the right side of Equation [91] disappears. The only remaining

viscous term is p V2 R. Since the motion of the liquid is irrotational, the velocity can be ex-

pressed as the gradient of a scalar velocity potential 11, and the last term on the right side of

Equation [911 is written:

P0 = v2 (_V[)) =-V( V - V Q)

v 2  
= pV (V.?R) =0

Therefore, there are no net viscous forces acting inside the liquid for the case of a pulsating

'pherical bubble in an incompressible, viscous liquid. Due to the presence of viscosity,

momentum is transmitted through the liquid, but each infinitesimal element of liquid volume

receives just a4 much as it loses; therefore, there is no net viscous force acting on any ele-

ment of volume internal to the liquid. The Navier-Stokes equation is not applicable for dis-

cussing the effect of viscosity for pulsating spherical bubbles.

flo-,ever, even though the net viscous forces in the liquid vanish, there are viscous

forces acting at the surface of the bubble where they exert an excess pressure. The net stress

dyadic S is written as 25

p V- - R It + 211 X 9 2)
,3

where I is the idem factor and X is the rate of pure strain dyadic. (The algebraic -;ign; conform

ith the practice in elasticity of denoting a tension as positive and a pre.sure a negative.)

\s the liquid i. incompressible, the divergence of the velocit. is zero, and L.quation :92I

simplifies to:

S= 2pX ln'.J

Dlue to the radial motion and spherical syrmetry, tho principal direction- of -tress and rate of

4rain must be radial: this %ill be chosen to correspond to SR and "R, respectively:

2.)



SR = 2 R1941

1,rajeof pture srair ' R is the goradient. or (lie radial velocity.

AR = d (R 12)15

erefore, the radial stress SR at the bubble s urface is

Si 2 I'JR - UX 96
0

mil the equat ion of motion for the bubble system, %%hen the effect of viscosit.N is included, is

i2 3b+ k 'v' 1)el' [9u1

0

V's
0

02,

-4 :-,U

Trherefore, the viscous damping constant at resonance is

I bvi 8~ m2 ,L 3y 8 3~ 1981

%% here y is the factor which takes into account the effect of surface tension, and 01 is a factor

%ahich describes the departure of the bubble stiffness from the adiabatic stiffnes-. The viscous"

damping constant 6v is directly proportional to the resonant frequency f/ *
The effect of viscosity is realized only ti rough the boundary condition at the surface

of the bubble, rather than through the Navier-Stokes equation %her,. the resultant of the vis-

cosity stresses per unit volume at any point internal to the liquid vanishes.

TOTAL DAMPING CONSTANT AT RESONANCE

The total damping for resonant air bubbles in %%ater may he explained by losses origi-

nating from the energy "hich is tran ,fornied into heat dluring the polvtrop~c compressions and

evlpans ions of thei air in the bubble, the energy radiated in the form of spherical sound "aves,



and the energy lost in viscous dissipation. The total damping constant So at resonance is

Iso = S-- (th +  Sad +  Ss i. 5

or

r 16 Fy (3 y- 1)

0 -)2 o 3(y - 1) 2"f°/R° 8,lpa
60 E [99]
16___ Fg I c 3yPO7 0q

9(y- 1)2 fo

Figure 4 is a plot of the thermal, radiation,

v,<cous, and total damping constants as a To,oi OaOFn_ _ ____

function of the resonant frequency fo for air

bubbles in water. Damping constants for air 00400
Therm I

bubbles in water ranging in radius from 3 00200 -. -- '- " I Rod'ohOn|

microns to 3 millimeters are displayed in oooo- -

Figure 4. The thermal damping constant 8
t C __

h 0 00040
reaches a maximum around 200 kilocycles per ooViscous

a 00020
second while the radiation damping constant o

S... is nearly constant up to 600 kilocycles 0

of the same order of magnitude as the radiation 0o-o- 400-0

crese Th vscos lapin cnstnt8 i 000 -rdito 000 4 0 40 100 400 I000

damping constant at 180 kilocycles per second; Resononi Frequency 1oi kiocycles per second

just above 1000 kilocycles per second, td)o Figure 4 - Theoretical Thermal, Radiation,

viscous damping constant and the thermal Viscous, and Total Damping Constants

damping constant have the same value, for Resonant Air Bubbles in Water

EXPERIMENTAL METHODS

There are essentially four methods by which the damping constant 80 can be determine

experimentally. Most of these methods are indirect ones involving the calculation of the damp-

ing constant from certain measured acoustical properties of the bubbles.

SUCCESSIVE OSCILLATIONS
2 6

Tile method of successive oscillations is a direct process for determining the dailipmg

constant. The signal from a hydrophone, which is placed close to an oscillating bubble, ,

amplified and applied tothe input terminals of acathodo-ray oscilloscope; the bubble pilse

appears on tbe screen as a damped sine wave. If the amplitude of successive oscillation is
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pJotted on eni-lo! paper as a function of the c~cle number of o,;cillation, the logarithmic de-

crement, and, therefore, the reciprocal Q can be determinel fro ' the slope. The resonant fre-

quency of the pulsating bubble is determined by appling a signal of known frequenc% to the

input of the osciloscope and measuring the time scale across the screen.

#IDTH OF THE RESONANCE RESPONSE 2 7
,

28
,29

On page 5, the Q of the bubble system %as defined in terms of the resonant frequency

and the two frequencies above and below at which the average sound power of the bubble had
decreased to one-half its resonance value. Since the power is proportional to the square of
either the radial velocity or the radial displacement, the damping constant 3o can be found by
plotting the ;quare of either of these parameters as a function of the frequency. The amplitude
of oscillation of large gas bubbles can be found using a photoelectric method, and, for small
bubbles, the radial velocity can be measured using a kind of velocity-ribbon micril:hone.

1. Photoelectric MJethod. % single gas bubble oscillating to a sonic excitatioi is illumi-
nated optically and the scattered light measured by a photoelectric cell. The change in cross
section of the bubble image modulates the quantity of light received at the photocell. The
alternating current generated in the circuit of the photocell, by the change in the bubble cross
section, is amplified and recorded on a suitable recorder. By varying the sonic excitation
frequency and noting the changes in the bubble cross section, the band width and the resonant
frequency can be determined.

'. 'Ubbon Microphone Method. % single bubble is caught on a small wax sphere fastened
to a platinum thread which is placed between the poles of an electromagnet. '.he bubble oscil-
lations are produced by a constant frequency magnetostriction projector. \s the bubble oscil-
late, the platinum thread is carried along with the oscillations and this motion of the platinum
thread produces an alternating E\F which is proportional to the radial velocity of the gas
bubble. This arrangement represents a sort of ribbon microphone. Since the generalized mass

is greater than the vibrating part of the mass of the thread or the wax, the platinum wire and
the wax are assumed to exert negligible influences op the resonant frequency. The bubble is
allowed to grow slowly and its diameter measured with a microscope; the voltage produced by
the ribbon microphone traverses a maximum as the diameter of the bubble increases. There-
fore, the resonant frequency and damping constant can be determined.

STANDING-WAVE RATIOS 30,31.32

\ single gas bubble is allowed to rise freely in . liquid-filled tube and oscillate undt,;r
the influence of a plane progressive sound wave. The diameter of the tube is less than half

a wavelength so that the sound pressure is constant over the cross section of the tube. Dis-
turbances by reflection of this sound wave from the free surface are prevented by an absorp-
tion device or by using a pulse technique. The sound energy E,, which is radiated by a
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r ,n-lucer at the 1,)er end of the tube, is partly reflected bN the I ubble E, and recorded b%

,i 1 robe h, Irophone arranged bet een the transducer and the bubble. The damping constant

0 e.n be mea-ured from the relatiie reflection coefficient (E. 'Ei )' . of a bubble oscillating

at its :esonant frequency:

- IE o (Pr'\

A here Z is the radius of the tube, and p, and p, are the sound pressures of the incident and

reflected waves, respectively. However, the energy of the reflected signal cannot be referred

to that of the direct signal because of friction losses occuring in the tube. In order to obtain

the corresponding energy of the direct signal, the energy of the reflected pulse is measured

when the bubble is replaced by an obstacle covering the entire cross section of the . a,

large bubble, for instance. Therefore, the damping constant can be measured from thc standii.g-

cave ratio, and the resonant frequency is that frequency of the plane progressive sound wave

which produces the maximum oscillation for the bubble.

RESONANCE ABSORPTION
3 3,3 4

Thiq method of determining the damping constant depends upon measuring the attenuation

of sound by a screen of bubbles. For bubbles of a single size, t' - attenuation through a bubble

-creen it a maximum at the resonant frequency of the bubbles. A projector aild transmission

I ' dr'phone are located on opposite sides of the bubble screen. Each instrument is faced to-

,, Lri the r.. and the line joining them, at the point of intersection with the bubble screen,

f r, - in anle ( aith the normal to the screen. In order to obtain data as to the distribution

or hulh- i cording to size, the rate of rise of bubbles, which is a function of the bubble

r diu-, i- hetermined. If only a very short burst of bubbles is allowed to escape from the bub-

hle producr- and the re.sultant screen is observed at a height h and time t later, the screen

,ntatns on,? those bubbles whose rate of rise is h,'t. When the bubbles are allowed to rise

rrcvIl but in the(,e definite bursts or pulses, attenuation measurements versus time elapsed

ifter the initiation of the pulse bubble screen are made using the transmission hydrophone.

l'hi, method is repeated for several projector frequencies. Carstensen and iFoldy 3 5 give the

resonant damping constant 5 0 in terms of the attenuation A:

L.:3 I n I i
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%%here no is the a orage number of bubbles per unit %olume,

d is the thickness of the bubble screen,

.r?'is the off-resonant bubble radius, and

("°)1, 2 2

in deriving Equation [101], Carstensen and Foldy made some assumptions about the off-
resonance behavior of the damping constant. They assumed, for a bubble screen containing
hubbles of essentially uniform size, that the off-resonance damping constant equals ,Io, W, )38 0

where 60 is the resonant clamping constant. The distribution in size, space, and number of
the bubbles must be known to determine the resonant damping constant.

COMPARISON OF THEORY AND EXPERIMENTAL RESULTS

The theoretical damping constant and the experimental values for the damping constants
are plotted as a function of the resonant frequency in Figure 5. Therefore, Figure 5 Vives an
indication as to how well the experimental results agree with the theory of damping.

Nleye: and Tamm 3 6 have used the width of the resonance response method to obtain the
damping constaat; these results are extremely high. This high damping constant may be due

to the particular conditions of the experiment. In using the ribbon microphone, considerable
damping may have been due to the oscillation of the platinum thread in the magnetic field.
In addition, the experimenters themselves state the bubbles appeared dull and blurred near
the resonance point; consequently, the diameter., of the bubbles could not have been measured

accurately %%ith a microscope, which would affect the determination of the resonant frequency.
The damping constant for large bubbles %%as determined using the photoelectric method. For
this procedure, Meyer and Tamm, and later Lauer, 37 used a thin wire annulus to hold the bub-
bles and prevent them fro, rising to the surface while the measurements were being made.
Indeed, the high dlamping constants found by Meyer and Tamm may be due to the wire annuli

adding to the damping of the bubble system. At low frequencies, the damping coistants
measured by l.auer are about 25 percent higher than the theoretical prediction.

Bauer, formerly of the David Taylor Model Basin and now at Reeves Instrument Com-

pan., used the successive oscillation method for determining the domping constant. In this
experiment, the damping constant for a free bubble was mea,,ured; therefore, there is no

additional damping due to a bubble holder. The bubble wa; formed at a nozzle; the volume
pulsation.- started just a.s the bubble closed and separated from the nozzle. The urpubiishe,i
damping con.-tant mea.surements of Bauer are about 20 percent higher than tile theoretical

prediction.
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Figure 5 - Theoretical and Experimental Values of the Damping Constant for
Resonant Air Bubbles in Water

Points are from faired curves through the experimenter's data.

Symbol Experimenter Method

X Meyer and Tamm Width of Resonance Response

o Carstensen and Foldy Resonance Absorption

i Bauer Successive Oscillations

0 Lauer Width of Resonance Response
* E ner Standing-Wave Rat~os
£ Exner and Ilampe Standing-Wave Ratios
0 Ilaeske Standing-Wave Ratios

The method of standing-wave ratios was used by Exner, 3a Exner and llampe, 3 9 and

iaoske, 4 ° to determine the resonant damping constant; the results of Exner, and Exner and
Ilampe agree very well with the theoretical curve. According to the theory, the viscous damp-
ing becomes important around 200 kilocycles per second; flaeske has measured the damping

constant in this frequency range. At resonant frequencies of 200 and 300 kilocycles per sec-
ond, the damping constants determined by llaeske are 4 to 8 percent lower than the theoretical
curve. When the theoretical damping constant curve does not include the viscous damping con-

stant, but only the thermal and radiation damping constants, the experimental results of Haeske
are 4 to 8 percent higher than the theoretical curve. However, the measurements by llaeske

are only accurate to within 10 percent. Therefore, a definite conclus;u, cannot be formed as
to whether viscous damping contributes or does not contribute ,o the total damping. Also, the
value for the coefficient of viscosity, which is used in determining the theoretical viscuLls
damping constant, was obtained experimentally for steady flow. At high frequencies, the value
for the coefficient of viscosity may be considerably smaller than for the steady-flow case.
This subject is now being investigated. Some additional damping experiments in thiq frequency
range using a different experimental method may also decide this dilemma. Above 40 kilo-
cycles per second, Exner an' Ilampe very often found "anomalous" bubbles with much lower
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damping con~tant, than the regular bubble.,. The mea.-ured resonant frequenc. did not aeree

w ith the frequenc% alculated from the mea.sured diameter of the' ible w hen Equation I721.

IF 17212o le Vlo P2 a

%%as used. The "anomalous" bubbles have higher frequencies than this equation predicts.

It was noted that in almost all cases the "anomal.ous" bubbles ha I dust partile., on their

surfaces. This increase in resonant frequency could not be explained by a decrease in the

generalized mass as the dust particles would add to this mass, and there does not seem to be

a logical explanation for a possible increase in the stiffne'si. Strasberg4
1 tentatively su-,es-

ted that this behavior may perhaps be associated with surface oscillations of the bubble since

for very small bubbles the frequency of surface oscillations may be of the same order as the

frequency of ordinary volume pulsations. The excitation of surface oscillations by sonic

e\cit tion may require soine nonsyrrmetr% supplieI b tl'o du~t particles. 'I'he lampii; a .- o-

ciated ai.h surface oscillations is not the same as the damping associated with volume pulsa-

tions, and this would account for the different damping constant measured for "anomalous"

bubbles. When !laeske performed his experiment, he took extreme care to obtain clean exper-

imental conditions, and found no trace of "anomalous" bubbles in the 100-300 kilocycles per

second range.

Carstensen and Foldy 4 2 used the resonance absorption method to determine the damping

constant. The damping constant results are very high. The authors admit they have only a

small amount of evidence to indicate that the off-resonance damping constant equals (1,)3, 0 .

The off-resonance damping constant was used in deriving an expression for the resonant damp-

ing constant in terms of the attenuation. In this method, a large numberof bubbles are present,

and the exact distribution in size, space, and number is difficult to determine. Also, there may

be interaction between individual bubbles; these interactions are suroly complex and difficult

to determine. The curve for the resonance damping constant as a function of the resonant fre-

quency is certainly broadened by the presence of bubbles having different resonant frequencies.

'laever, this broadening is difficult to calculate since the exact bubble distribution in size,

space, and number is not known to a sufficient degree.

Excluding the results obtained by ,Meyer and Tamm, and Carstensen and l'oldy, the

experimental damping constants agree very well with the theoretical curve. The damping con-

,tant, at 1o resonant frequencies obtained by Bauer and Lauer, using different experimental
methods, agree quite well with each other, but their results ate higher than the theory predicts.

\., mentioned on page 1, the r( sonant frequency is only Fligl.tly different for nonspherical
bubbles . lowever, the viscous damping theory assumed spherical bubbles where the motion

is completely radial. Perhaps there is considerably more viscous damping when the bubble is
slizhtly nonspherical. In addition to volume pulsations, there are also osciliatLions in the

3 2



4hape of the bubble. Recent works indicates that for large amplitude radial pulsations, there

is some coupling between the radial motion and the shape oscillati-m This may result in the

removal of some of the energy associated with the pulsation. At high frequencies, the exper-

imental data of Ilaesko do not confirm whether or not viscous damping is important.

SUMMARY AND CONCLUSION

Bubbles excited to volume pulsations have a polytropic equation of state for the gas

which results in a phase difference between the change in pressure per unit original pressure

and the change in volume per unit original volume. Therefore, the work done in compressing
the bubble is more than the work done by the bubble in expanding; this difference in the work
done represents a not flow of heat energy into the liquid. When an error in the derivation by

Pfriem for this thermal damping is corrected, the curve for the theoretical thermal damping

constant at resonance agrees exactly with Willis' theoretical curve as given in the report by

Spitzer.
Pulsating bubbles expend a portion of their energy in the form of spherical sound waves.

The radiation damping is just this loss of energy in the form of sound waves.

The effect of viscosity on pulsating bubbles in an incompressible, viscous liquid is

understood through the stress equations and the boundary conditions, rather than the Navier-

Stokes equation of motion. At the bubble surface, there are viscous forces acting which exert
an excess pressure; this results in the dissipation of energy.

Experimental results verify that the damping at resonance is due to thermal and radia-

tion, and possibly viscous damping. The discrepancies between theory and experimental re-
sults found in measurements by Meyer and Tamm, and Carstensen and Foldy are due to the

particular conditions of ti o experiments. The small discrepancy between the theory and the

results of flauer and Lauer may be due to an increase in viscous damping caused by the non-

spherical shape of the gas bubble, and the possibility that there is some coupling between

the radial motion and the shape oscillations which may remove some of the energy associated

with the puisation.
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